642 research outputs found

    Detection of extended spectrum B-lactamases in urinary isolates of Klebsiella pneumoniae in relation to Bla SHV, Bla TEM and Bla CTX-M gene carriage

    Get PDF
    Background: Resistance to contemporary broad-spectrum β-lactam antibiotics mediated by extended-spectrum β-lactamases (ESBLs) is increasing worldwide. Klebsiella pneumoniae, an important cause of nosocomial and community acquired urinary tract infections has rapidly become the most common ESBL producing organism. We examined ESBL production in urinary isolates of K. pneumoniae in relation to the presence of bla SHV, bla TEM and bla CTX-M genes. Methods: Antibiotic resistance of 51 clinical isolates of K. pneumoniae was determined to amoxicillin, amikacin, ceftazidime, cefotaxime, cefteriaxon, ceftizoxime, gentamicin, ciprofloxacin and nitrofurantoin by disc diffusion. Minimum inhibitory concentrations were also measured for ceftazidime, cefotaxime, cefteriaxon, ceftizoxime and ciprofloxacin. ESBL production was detected by the double disc synergy test and finally, presence of the bla SHV, bla TEM and bla CTX-M genes were shown using specific primers and PCR. Results: Disc diffusion results showed that 96.08 % of the isolates were resistant to amoxicillin followed by 78.43 % resistance to nitrofurantoin, 49.02 % to amikacin and ceftazidime, 41.17 % to ceftriaxone, 37.25% resistance to cefotaxime and ceftizoxime, and 29.42 % to gentamicin and ciprofloxacin. Both resistant and intermediately resistant organisms were resistant in MIC determinations. Twenty two isolates (43.14%) carried bla SHV, 18 (35.29%) had bla TEM and 16 (31.37%) harbored bla CTX-M genes. ESBL production was present in 14 isolates (27.45 %) of which, 3 did not harbor any of the 3 genes. Among the non- ESBL producers, 9 lacked all 3 genes and 2 carried them all. Conclusion: No relation was found between gene presence and ESBL expression

    Analysis and Optimization of Scientific Applications through Set and Relation Abstractions

    Get PDF
    Writing high performance code has steadily become more challenging since the design of computing systems has moved toward parallel processors in forms of multi and many-core architectures. This trend has resulted in exceedingly more heterogeneous architectures and programming models. Moreover, the prevalence of distributed systems, especially in fields relying on supercomputers, has caused the programming of such diverse environment more difficulties. To mitigate such challenges, an assortment of tools and programming models have been introduced in the past decade or so. Some efforts focused on the characteristics of the code, such as polyhedral compilers (e.g. Pluto, PPCG, etc.) while others took in consideration the aspects of the application domain and proposed domain specific languages (DSLs). DSLs are developed either in the form of a stand-alone language, like Halide for image processing, or as a part of a general purpose language (e.g., Firedrake- a DSL embedded in Python for solving PDEs using FEM.) called embedded. All these approaches attempt to provide the best input to the underlying common programming models like MPI and OpenMP for distributed and shared memory systems respectively. This dissertation introduces Kaashi, a high-level run-time system, embedded in C++ language, designed to manage memory and execution order of programs with large input data and complex dependencies. Kaashi provides a uniform front-end to multiple back-ends focusing on distributed systems. Kaashi abstractions allows the programmer to define the problem’s data domain as a collection of sets and relations between pairs of such sets. The aforesaid level of abstraction could enable series of optimizations which, otherwise, are very expensive to detect or not feasible at all. Furthermore, Kaashi’s API helps novice programmers to write their code more structurally without getting involved in details of data management and communication

    The Genetic and Epigenetic Journey of Embryonic Stem Cells into Mature Neural Cells

    Get PDF
    Epigenetic changes occur throughout life from embryonic development into adulthood. This results in the timely expression of developmentally important genes, determining the morphology and identity of different cell types and tissues within the body. Epigenetics regulate gene expression and cellular morphology through multiple mechanisms without alteration in the underlying DNA sequences. Different epigenetic mechanisms include chromatin condensation, post-translational modification of histone proteins, DNA cytosine marks, and the activity of non-coding RNA molecules. Epigenetics play key roles in development, stem cell differentiation, and have high impact in human disease. In this review, we will discuss our current knowledge about these epigenetic mechanisms, with a focus on histone and DNA marks. We will then talk about the genetics and epigenetics of embryonic stem cell self-renewal and differentiation into neural stem cells, and further into specific neuronal cell types

    Thermodynamics of rotating black branes in (n+1)(n+1)-dimensional Einstein-Born-Infeld gravity

    Get PDF
    We construct a new class of charged rotating solutions of (n+1)(n+1)-dimensional Einstein-Born-Infeld gravity with cylindrical or toroidal horizons in the presence of cosmological constant and investigate their properties. These solutions are asymptotically (anti)-de Sitter and reduce to the solutions of Einstein-Maxwell gravity as the Born-Infeld parameters goes to infinity. We find that these solutions can represent black branes, with inner and outer event horizons, an extreme black brane or a naked singularity provided the parameters of the solutions are chosen suitably. We compute temperature, mass, angular momentum, entropy, charge and electric potential of the black brane solutions. We obtain a Smarr-type formula and show that these quantities satisfy the first law of thermodynamics. We also perform a stability analysis by computing the heat capacity and the determinant of Hessian matrix of mass with respect to its thermodynamic variables in both the canonical and the grand-canonical ensembles, and show that the system is thermally stable in the whole phase space.Comment: 12 pages, one figur

    Tunneling in a Cosmological Model with Violation of Strong Energy Condition

    Get PDF
    The tunneling rate, with exact prefactor, is calculated to first order in \hbar for a closed FRW universe filled with perfect fluid violating the strong energy condition. The calculations are performed by applying the dilute-instanton approximation on the corresponding Duru-Kleinert path integral. It is shown that a closed FRW universe filled with a perfect fluid with small violation of strong energy condition is more probable to tunnel than the same universe with large violation of strong energy condition.Comment: 11 pages, LaTe
    corecore